宇宙射线

编辑 锁定 讨论
宇宙线亦称为宇宙射线,是来自外太空的带电高能次原子粒子。它们可能会产生二次粒子穿透地球的大气层和表面。射线这个名词源自于曾被认为是电磁辐射的历史。主要的初级宇宙射线(来自深太空与大气层撞击的粒子)成分在地球上一般都是稳定的粒子,像是质子、原子核、或电子。但是,有非常少的比例是稳定的反物质粒子,像是正电子反质子,这剩余的小部分是研究的活跃领域。
大约89%的宇宙线是单纯的质子,10%是原子核(即α粒子),还有1%是重元素。这些原子核构成宇宙线的99%。孤独的电子(像是β粒子,虽然来源仍不清楚),构成其余1%的绝大部分;γ射线和超高能中微子只占极小的一部分。
粒子能量的多样化显示宇宙线有着广泛的来源。这些粒子的来源可能是太阳(或其它恒星)或来自遥远的可见宇宙,由一些还未知的物理机制产生的。宇宙线的能量可以超过1020eV,远超过地球上的粒子加速器可以达到的1012至1013 eV,使许多人对有更大能量的宇宙线感兴趣而投入研究。 [1] 
经由宇宙线核合成的过程,宇宙线对宇宙中锂、铍、和硼的产生,扮演着主要的角色。它们也在地球上产生了一些放射性同位素,像是碳-14。在粒子物理的历史上,从宇宙线中发现了正电子、μ子π介子。宇宙线也造成地球上很大部分的背景辐射,由于在地球大气层外和磁场中的宇宙线是非常强的,因此对维护航行在行星际空间的太空船上太空人的安全,在设计有重大的影响。 [2-3] 
中文名
宇宙射线
外文名
cosmic rays
领    域
宇宙学
提出时间
1912年
提出人
韦克多·汉斯

宇宙射线成分

编辑
亨利·贝克勒1896年发现放射性后,许多人认为大气中的电流(地球大气层的电离)仅来自于土中放射性物质或产生出的放射性气体(气的同位素)的辐射。1900至1910年,十年内逐增高度的电离率测量显示出一个能够通过空气对电离辐射的吸收解释的降值。其后,维克托·赫斯于1912年利用一个热气球,带着三台静电计,登上了5300米的高空。他探测到电离率增长到大约地面率的四倍。他得出的结论是“我的观察结果最好的解释是设想一种高穿透力的射线从上部进入大气层。”维克托·赫斯因为这次后人命名为“宇宙线”(cosmic rays)的发现于1936年获得诺贝尔物理学奖
宇宙线大致可以分成两类:原生和衍生宇宙线。 来自太阳系外的天文物理产生的宇宙线是原宇宙线;这些原宇宙线会和星际物质作用产生衍生(二次)宇宙线。太阳在产生闪焰时,也会产生一些低能量的宇宙线。在地球大气层外的原宇宙线,确实的成分,取决于观测能量谱的哪些部分。不过,一般情况下,进入的宇宙线几乎90%是质子,9%是核(α粒子),和大约1%是电子。氢和氦核的比例(质量比氦核是28%)大约与这些元素在宇宙中的元素丰度(氦的质量占24%)相同。
其余丰富的部分是来自于恒星核合成最终产物的其它重原子核。衍生宇宙线包含其它的原子核,它们不是丰富的核合成或大爆炸的最终产物,原生的、和。这些较轻的原子核出现在宇宙线中的比例远大于在太阳大气层中的比例(1:100个粒子),它们的丰度大约是的10。
这种丰度的差异是衍生宇宙线造成的结果。当宇宙线中重的原子核成分,即碳和氧的原子核,与星际物质碰撞时,它们分裂成较轻的锂、铍、硼原子核(此过程被称为宇宙射线散裂)。被发现的锂、铍和硼的能谱比来自碳或氧的更为尖细,这个值暗示有少数的宇宙射线散裂是由更高能量的原子核产生的,推测大概是因为它们是从银河的磁场逃逸出来的。散裂也对宇宙线中的离子等的丰度负责,它们是宇宙线中的原子核与星际物质撞击产生的(参见天然的背景辐射)。
即使卫星实验在原宇宙线中发现一些反质子正电子存在的证据,但没有复杂的反物质原子核(例如反氦核)存在的证据。在原宇宙线中观测到的反物质丰度是符合它们也能由原宇宙线在深太空和普通物质撞击,在衍生宇宙线的程序中产生的理论。例如,一种在实验室中产生反质子的标准方法是以能量大于6GeV的质子去撞击其他的质子,而在原宇宙线中很轻易的就有许多质子的能量超过这个数值。无论是否在银河系中,当简单的反物质能够由这种程序产生时(不是在大气层的高层),它们仍可能传播遥远的距离抵达地球,而不会在星际空间中与其他的氢原子碰撞而湮灭。抵达地球的反质子特征是能量最多只有2GeV,显示它们产生的过程在基本上与宇宙线中的质子是截然不同的。
在过去,人们认为宙线的通量随着时间的推移一直是相当稳定。最近的研究显示,以1.5至2千年的时间尺度,有证据显示在过去的40,000年,宇宙线的通量是有变化的。 [4] 

宇宙射线射线发现

编辑
1912年,德国科学家韦克多·汉斯带着电离室在乘气球升空测定空气电离度的实验中,发现电离室内的电流随海拔升高而变大,从而认定电流是来自地球以外的一种穿透性极强的射线所产生的,于是有人为之取名为“宇宙射线”。
宇宙线亦称为宇宙射线,是来自外太空的带电高能次原子粒子。它们可能会产生二次粒子穿透地球的大气层和表面。射线这个名词源自于曾被认为是电磁辐射的历史。主要的初级宇宙射线(来自深太空与大气层撞击的粒子) 成分在地球上一般都是稳定的粒子,像是质子、原子核、或电子。但是,有非常少的比例是稳定的反物质粒子,像是正电子反质子,这剩余的小部分是研究的活跃领域。
大约89% 的宇宙线是单纯的质子或氢原子核,10%是氦原子核α粒子,还有1%是重元素。这些原子核构成宇宙线的99%。孤独的电子(像是β粒子,虽然来源仍不清楚),构成其余1%的绝大部分;γ射线和超高能中微子只占极小的一部分。
粒子能量的多样化显示宇宙线有着广泛的来源。这些粒子的来源可以是太阳(或其它恒星) 上的
一些程序或来自遥远的可见宇宙,由一些还未知的物理机制产生的。宇宙线的能量可以超过10E20eV,远超过地球上的粒子加速器可以达到的10E12至10E13 eV,使许多人对有更大能量的宇宙线感兴趣而投入研究[1]。
经由宇宙线核合成的过程,宇宙线对宇宙中锂、铍、和硼的产生,扮演着主要的角色。它们也在地球上产生了一些放射性同位素,像是碳-14。在粒子物理的历史上,从宇宙现中发现了正电子、μ和π介子。宇宙线也造成地球上很大部份的背景辐射,由于在地球大气层外和磁场中的宇宙线是非常强的,因此对维护航行在行星际空间的太空船上太空人的安全,在设计有重大的影响。
宇宙线大致可以分成两类:原生和衍生宇宙线。 来自太阳系外的天文物理产生的宇宙线是原宇宙线;这些原宇宙线会和星际物质作用产生衍生(二次)宇宙线。太阳在产生闪焰时,也会产生一些低能量的宇宙线。在地球大气层外的原宇宙线,确实的成份,取决于观测能量谱的哪些部份。不过,一般情况下,进入的宇宙线几乎90%是质子,9%是核(α粒子),和大约1%是电子。氢和氦核的比例(质量比氦核是28%)大约与这些元素在宇宙中的元素丰度(氦的质量占24%)相同。

宇宙射线调节

编辑
太阳调节(solar modulation)指太阳或太阳风改变进入太阳系的银河系宇宙射线强度和能谱的过程。当太阳处于活跃时期,相比安静时期,银河系的宇宙射线会较少的进入太阳系。基于这个原因,银河系宇宙射线与太阳一样遵从11年周期,但不同的是:剧烈的太阳活动对应低宇宙射线(进入太阳系),反之亦然。

宇宙射线早期地球影响

编辑
约在46亿年前,地球刚从太阳星云中形成。初生的地球,固体物质聚集成内核,外周则是大量的等气体,称为第一代大气。
那时,由于地球质量还不够大,还缺乏足够的引力将大气吸住,又有强烈的太阳风(是太阳因高温膨胀而不断向外抛出的粒子流,在太阳附近的速度约为每秒350~450公里),所以以
宇宙射线 宇宙射线
氢、氦为主的第一代大气很快就被吹到宇宙空间。地球在继续旋转和聚集的过程中,由于本身的凝聚收缩和内部放射性物质(如铀、钍等)的蜕变生热,原始地球不断增温,其内部甚至达到炽热的程度。于是重物质就沉向内部,形成地核地幔,较轻的物质则分布在表面,形成地壳。
初形成的地壳比较薄弱,而地球内部温度又很高,因此火山活动频繁,从火山喷出的许多气体,构成了第二代大气即原始大气
原始大气是无游离氧的还原性大气,大多以化合物的形式存在,分子量大一些,运动也慢一些,而此时地球的质量和引力已足以吸住大气,所以原始大气的各种成分不易逃逸。以后,地球外表温度逐渐降低,水蒸汽凝结成雨,降落到地球表面低凹的地方,便成了河、湖和原始海洋。当时由于大气中无游离氧(O2),因而高空中也没有臭氧(O3)层来阻挡和吸收太阳辐射的紫外线,所以紫外线能直射到地球表面,成为合成有机物的能源。此外,天空放电、火山爆发所放出的热量,宇宙间的宇宙射线(来自宇宙空间的高能粒子流,其来源目前还不了解)以及陨星穿过大气层时所引起的冲击波(会产生摄氏几千度到几万度的高温)等,也都有助于有机物的合成。但其中天空放电可能是最重要的,因为这种能源所提供的能量较多,又在靠近海洋表面的地方释放,在那里作用于还原性大气所合成的有机物,很容易被冲淋到原始海洋之中。

宇宙射线历史起源

编辑
宇宙线的起源通常指宇宙线中的主要成分──各种原子核的发射和加速过程。宇宙线在空间中的运动和分布,属于宇宙线的传播问题。宇宙线的起源和传播问题是彼此密切相关的:加速和传播阶段不能截然划分开;相当一部分初级宇宙线原子核产生于传播过程中。
宇宙线的起源和传播是高能天体物理学中一个重要的问题。宇宙线是各种天体演化过程的产物,特别是各种高能天体物理过程的产物,携带着这些过程的丰富信息。
但是,宇宙线起源和传播的研究有许多困难:首先由于宇宙线带电粒子在星际空间传播过程中受到磁场的偏转,人们无法直接探知它们在空间的分布,只能由宇宙线在运动和作用过程中发射出的射电波、X 射线和γ射线间接地推断它们的存在。宇宙线在传播过程中,还同星际物质作用,不断改变其能量和组成,观测到的初级宇宙线成分和能谱,是由原始起源与传播过程共同决定的。从地球附近初级宇宙线推断产生源处原始宇宙线的情况,必须考虑宇宙线在传播过程中同星际物质的作用以及地球和太阳系磁场的调制,由射电、X射线和γ射线观测推断银河系内宇宙线粒子分布,也必须了解星际介质的分布情况;但是人们对于太阳系磁场和一些重要的星际介质(如星际氢分子)的认识还只是刚刚开始。此外,随着初级宇宙线观测的进展,现有核物理和高能物理知识(如原子核反应截面长寿命放射性核素的衰变寿命和分支比)的不足,已越来越成为限制人们了解原始宇宙线的重要原因。
宇宙线高能粒子应起源于各种高能天体或天体高能过程。太阳和其他恒星表面的高能活动、超新星爆发、脉冲星、类星体和活动星系等,都可能是宇宙线源。目前人们普遍认为大多数宇宙线粒子起源于银河系内。太阳耀斑爆发等高能过程伴随着粒子的发射,但这种太阳活动只能产生太阳系空间宇宙线粒子的一个小部分,而且太阳粒子平均能量仅数十兆电子伏,大部分宇宙线应来自太阳系之外。银河系普通恒星的粒子发射只能产生银河系内宇宙线粒子的一个微不足道的部分,大部分宇宙线应产生于比普通恒星活动更剧烈的过程。
超新星爆发是银河系内最猛烈的高能现象。银河系超新星爆发的平均能量输出可以满足维持银河宇宙线能量密度的需要。蟹状星云等超新星遗迹强烈发射高度偏振的非热射电辐射,它们应当是高能电子在磁场中的同步辐射。超新星遗迹中存在着大量的高能电子,应当是宇宙线高能电子的发源地。人们普遍设想超新星爆发及其遗迹也应当发射高能原子核,成为宇宙射线的主要来源。宇宙线中氢和氦核的相对丰度较太阳系或银河系平均丰度小,表明宇宙线原子核可能来自恒星演化过程的晚期。宇宙线中重元素(例如Z>60)较多,它们可能是超新星爆发条件下快速中子俘获过程(γ过程)的产物。宇宙线中一些元素的丰中子同位素较多,也表明宇宙线可能起源于超新星爆发形成的丰中子环境中。但是,迄今并无直接的证据说明超新星及其遗迹发射高能原子核。超新星爆发所释放的能量如何转化为粒子的动能,以及从很多超新星这样的分立源如何能形成宇宙线粒子的幂律能谱,都是超新星起源模型所面临的困难。对于初级宇宙线元素丰度的新近测量结果的分析表明,原始宇宙线重元素的相对丰度分布接近于太阳系的分布,与γ过程预期的分布差别甚大,也同超新星起源模型不一致。
E.费密曾于1949年提出宇宙线在星际介质中统计加速的机制:带电粒子在同随机运动的磁场不断地碰撞中得到加速。费密加速机制可以解释宇宙线的幂律能谱。但是,费密机制要求粒子另有初始加速过程,要求有足够的能量供给星际介质中磁场的运动;同时费密机制不利于加速重原子核,难以解释观测到的宇宙线丰度分布。近来的X射线观测发现,超新星遗迹中至少在104年内存在着强烈的激波。理论分析表明,星际介质中的激波可以有效地加速宇宙线粒子,而且可以产生幂律能谱。由超新星爆发等高能活动引起的较强烈的激波在星际空间高温稀薄气体中可能传播足够长的路程,使激波加速机制可能有效地加速宇宙线粒子。但是,近来发现原始宇宙线元素丰度分布与原子第一电离能密切相关:第一电离能愈低的元素,原始宇宙线丰度与太阳丰度之比愈大。所以,宇宙线起源和加速区域的温度不能太高(<104开),使超新星爆发和高温气体中的加速机制遇到了困难。X射线天文观测发现,银河系中为数众多的晚期恒星(K型和M型矮星)虽然光辐射微弱,但X射线发射和耀斑活动(从而粒子发射)的高能过程却仍然很活跃,因而可能是宇宙线的重要发源地。但它们发射出的粒子如何进一步得到加速,也是一个没有解决的问题。 银河系内产生的高能宇宙线粒子,如果自由地在空间中传播,则应在103~104年时间内飞出银河系。由初级宇宙线元素相对丰度推得宇宙线粒子平均穿过的物质厚度约为5克/厘米2,而银盘中星际气体的平均密度约为1氢原子/厘米3,则宇宙线在银盘中的平均滞留时间约3×106年,比自由粒子穿越银盘的时间长得多。所以星际空间中宇宙线粒子不是自由地传播而是在非均匀分布的星际介质中扩散,并且可能在银河系边界处受到反射。从初级宇宙线中一些长寿命同位素(如10Be)相对丰度推得的宇宙线平均寿命 (塼107年)比在银盘中的滞留时间长,所以银河宇宙线粒子在其寿命内的大部分时间中可能是在围绕银盘的某个物质稀薄的区域──宇宙线晕中传播的。 目前人们关于银河系的知识和对宇宙线的观测,还不足以构成和判断细致的宇宙线传播模型。在处理与宇宙线传播效应有关的问题(例如从初级宇宙线组成和能谱推断原始宇宙线的组成和能谱)时,常采用一些简化的稳态传播模型,例如漏箱模型。漏箱模型假定银河系内宇宙线粒子密度不随时间和地点变化,宇宙线粒子在银河系内扩散,通过边界以一定的概率缓慢地向银河系外泄漏。 虽然自60年代以来,随着初级宇宙线以及射电、X射线和γ射线天文观测的进展,人们对于宇宙线起源和传播的认识在不断深入,但由于问题的复杂性,迄今尚未能得到较为满意的模型。人们对于极高能量宇宙线的了解就更少了;即使对于这部分宇宙线的成分,都还缺乏任何明确的认识。银河系磁场不能贮存能量高于 1018电子伏的粒子,银河系内起源的极高能粒子应当呈现高度的各向异性;但能量高于1018电子伏宇宙线粒子方向的各向异性度揥10%,而且较多的粒子并非来自银河系中心,所以极高能宇宙线粒子可能起源于银河系外。由于河外星系的空间密度很低,河外区域必须存在比银河系强大得多的宇宙线粒子源,才能解释观测到的极高能宇宙线粒子流。

宇宙射线方式

我们知道,宇宙线主要是由质子、氦核、铁核等裸原子核组成的高能粒子流;也含有中性的珈玛射线和能穿过地球的中微子流。它们在星系际银河和太阳磁场中得到加速和调制,其中一些最终穿过大气层到达地球。人类对宇宙射线作微观世界的研究过程中采用的观测方式主要有三种,即:空间观测、地面观测、地下(或水下)观测。

宇宙射线观测站

为了有效和长期对宇宙射线进行观测,各国都相继建立了观测站。1943年,前苏联亚美尼亚建立了海拔3200米的阿拉嘎兹高山站;日本在战后建立了海拔2770米的乘鞍山观测所;1954年中国建立了海拔3200米的云南东川站。1990年,中日双方共同合作建立了西藏羊八井宇宙射线观测站。几乎所有外来的高能宇宙线,除中微子外在穿过大气层时都要与大气中的氧、氮等原子核发生碰撞,并转化出次级宇宙线粒子,而超高能宇宙线的次级粒子又将有足够能量产生下一代粒子,如此下去,将会产生一个庞大的粒子群;这一现象是1938年由法国人奥吉尔阿尔卑斯山观测发现的,并取名为“广延大气簇射”。

宇宙射线广延研究

在广延大气簇射过程中,能量低于10的14次方电子伏特的粒子很难到达3000米以下的低空,而是在4000米处超高能粒子群发展到极大。由于西藏羊八井地处海拔4300米,终年无积雪,地势平坦开阔,在能源、交通及生活上都具有便利条件,科研人员可在此进行长年不间断观测。以羊八井的闪烁体探测器为例,当粒子穿过闪烁体时在其中损失能量使闪烁体发生荧光,这一束闪光经过光阴极转换和光电倍增管放大后变为一个电脉冲信号。这个信号经过电缆被送到电子学记录系统,由磁带进行全年不间断记录。同时我们可以想到,如果我们在单位面积上安装的闪烁体越多、密度越大;所接收的射线粒子也越多,记录就更精密。除闪烁体探测器以外,羊八井站建成的宇宙射线采集方式还有:80平米乳胶室和地方性簇射探测器;中子堆中中子望远镜;试验型50平米RPC地毯式探测器
宇宙射线还存在着转化、簇射的过程。除中微子外,几乎所有的高能宇宙射线,在穿过大气层时都要与大气中的氧、氮等原子核发生碰撞,并转化出次级宇宙线粒子,而超高能宇宙线的次级粒子又将有足够能量产生下一代粒子,如此下去,一级一级的转化,将会产生一个庞大的粒子群。1938年,法国人奥吉尔在阿尔卑斯山观测发现了这一现象,并将其命名为“广延大气簇射”。

宇宙射线影响因素

编辑
阻挡气层
虽然当宇宙射线到达地球的时候,会有大气层来阻挡住部分的辐射,但射线流的强度依然很大,很可能对空中交通产生一定程度的影响。比方说,现代飞机上所使用的控制系统和导航系统均有相当敏感的微电路组成。一旦在高空遭到带电粒子的攻击,就有可能失效,给飞机的飞行带来相当大的麻烦和威胁。
还有科学家认为,长期以来普遍受到国际社会关注的全球变暖问题很有可能也与宇宙射线有直接关系。这种观点认为,温室效应可能并非全球变暖的惟一罪魁祸首,宇宙射线有可能通过改变低层大气中形成云层的方式来促使地球变暖。这些科学家的研究认为,宇宙射线水平的变化可能是解释这一疑难问题的关键所在。他们指出,由于来自外层空间的高能粒子将原子中的电子轰击出来,形成的带电离子可以引起水滴的凝结,从而可增加云层的生长。也就是说,当宇宙射线较少时,意味着产生的云层就少,这样,太阳就可以直接加热地球表面。对过去20年太阳活动和它的放射性强度的观测数据支持这种新的观点,即太阳活动变得更剧烈时,低空云层的覆盖面就减少。这是因为从太阳射出的低能量带电粒子(即太阳风)可使宇宙射线偏转,随着太阳活动加剧,太阳风也增强,从而使到达地球的宇宙射线较少,因此形成的云层就少。此外,在高层空间,如果宇宙射线产生的带电粒子浓度很高,这些带电离子就有可能相互碰撞,从而重新结合成中性粒子。但在低空的带电离子,保持的时间相对较长,因此足以引起新的云层形
此外,几位美国科学家还认为,宇宙射线很有可能与生物物种的灭绝与出现有关。他们认为,某一阶段突然增强的宇宙射线很有可能破坏地球的臭氧层,并且增加地球环境的放射性,导致物种的变异乃至于灭绝。另一方面,这些射线又有可能促使新的物种产生突变,从而产生出全新的一代。这种理论同时指出,某些生活在岩洞、海底或者地表以下的生物正是由于可以逃过大部分的辐射才因此没有灭绝。从这种观点来看,宇宙射线倒还真是名副其实的“宇宙飞弹”。

宇宙射线研究意义

编辑
人类仍然不能准确说出宇宙射线是由什么地方产生的,但普遍认为它们可能来自超新星爆发、来自遥远的活动星系;它们无偿地为地球带来了日地空间环境的宝贵信息。科学家希望接收这些射线来观测和研究它们的起源和宇观环境中的微观变幻。
宇宙射线的研究已逐渐成为了天体物理学研究的一个重要领域,许多科学家都试图解开宇宙射线之谜。可是一直到现在,人们都并没有完全了解宇宙射线的起源。一般的认为,宇宙射线的产生可能与超新星爆发有关。对此,一部分科学家认为,宇宙射线产生于超新星大爆发的时刻,“死亡”的恒星在爆发之时放射出大能量的带电粒子流,射向宇宙空间;另一种说法则认为宇宙射线来自于爆发之后超新星的残骸。
不管最终的定论将会如何,科学家们总是把极大的热情投入到宇宙射线的研究中去。关于为什么要研究宇宙射线,罗杰·柯莱在其著作《宇宙飞弹》作出了精辟的阐释:
“宇宙射线的研究已变成天体物理学的重要领域。尽管宇宙射线的起源至今未能确定, 人们 已普遍认为对宇宙射线的研究能获得宇宙绝大部分奇特环境中有关过程的大量信息:射电星系、类星体以及围绕中子星和黑洞由流入物质形成的沸腾转动的吸积盘的知识。我们对这些天体物理学客体的理解还很粗浅,当今宇宙射线研究的主要推动力是渴望了解大自然为什么在这些 天体上能产生如此超常能量的粒子。”
出于对宇宙射线研究的重视,世界各国纷纷投入资金与设备对其展开研究。前苏联、日本、中国、美国、法国等国家相继建立了宇宙射线观测站。虽然宇宙射线的起源尚无定论,但科学家们仍然逐步了解了宇宙射线的种种特性,以及对地球和人类环境的影响。

宇宙射线研究历史

编辑
1903年,卢瑟福(Ernest Rutherford,1871-1937)(左图)和库克(H.L.Cooke)研究过这个问题。他们发现,如果小心地把所有放射源移走,在验电器中每立方厘米内,每秒钟还会有大约十对离子不断产生。他们用铁和铅把验电器完全屏蔽起来,离子的产生几乎可减少十分之三。他们在论文中提出设想,也许有某种贯穿力极强,类似于γ射线的辐射从外面射进验电器,从而激发出二次放射性。
1909年,莱特(Wright)为了搞清这个现象的缘由,在加拿大安大略(Ontario)湖的冰面上重复上述实验,发现游离数略有减小。
1910年,法国的沃尔夫(Father Theodor Wulf)在巴黎300米高的埃菲尔塔顶上进行实验,比较塔顶和地面两种情况下残余电离的强度,得到的结果是塔顶约为地面的64%,比
宇宙射线 宇宙射线
他预计的10%要高。他认为可能在大气上层有γ源,也可能是γ射线的吸收比预期的小。
1910-1911年,格克耳(Alfred Gockel)在瑞士的苏黎世让气球把电离室带到4500米高处,记录下几个不同高度的放电速率。他的结论是:“辐射随高度的增加而降低的现象……比以前观测到的还要显著。”
这种源的放射性与当时人们比较熟悉的放射性相比具有更大的穿透本领,因此人们提出这种放射性可能来自地球之外——这就是宇宙射线最初的迹象。
奥地利物理学家赫斯(Victor Franz Hess,1883-1964)是一位气球飞行的业余爱好者。他设计了一套装置,将密闭的电离室吊在气球下,电离室的壁厚足以抗一个大气压的压差。他乘坐气球,将高压电离室带到高空,静电计的指示经过温度补偿直接进行记录。他一共制作了十只侦察气球,每只都装载有2~3台能同时工作的电离室。
1911年,第一只气球升至1070米高,在那一高度以下,辐射与海平面差不多。翌年,他乘坐的气球升空达5350米。他发现离开地面700米时,电离度有些下降(地面放射性造成的背景减少所致),800米以上似乎略有增加,而后随着气球的上升,电离持续增加。在1400米~2500米之间显然超过海平面的值。在海拔5000米的高空,辐射强度竟为地面的9倍。由于白天和夜间测量结果相同,因此赫斯断定这种射线不是来源于太阳的照射,而是宇宙空间。
赫斯认为应该提出一种新的假说:“这种迄今为止尚不为人知的东西主要在高空发现……它可能是来自太空的穿透辐射。”1912年赫斯在《物理学杂志》发表题为“在7个自由气球飞行中的贯穿辐射”的论文。
赫斯的发现引起了人们的极大兴趣,从那时开始,科学界对宇宙射线的各种效应和起源问题进行了广泛的研究。最初,这种辐射被称为“赫斯辐射”,后来被正式命名为“宇宙射线”。当时,许多物理学家怀疑赫斯的测量,并认为这种大气电离作用不是来自太空,而是起因于地球物理现象,例如组成地壳的某种物质发出的放射性。现在认为,宇宙线是来自宇宙空间的高能粒子流的总称。
1914年,德国物理学家柯尔霍斯特(Werner Kolhorster,1887-1946)将气球升至9300米,游离电流竟比海平面大50倍,确证了赫斯的判断。
1922年,美国科学家密立根(Robert Andrews Millikan,1868-1953)(左图)和玻恩(I.S.Bowen)将这些实验拿到55000英尺的高空去做,为了解决这种辐射的来源,他们先是在高山顶上测量,后来又把装有验电器和电离器的不载人的气球升到高空来测量大气的电离作用
1925年夏,密立根和助手们在加利福尼亚州群山中的Muir湖(缪尔湖)和Arrowhead湖(慈菇湖)的深处做实验,试图通过测量电离度与湖深的变化关系来确定宇宙射线的来源,之所以选择这两个湖,是因为它们都是由雪水作为水源,可以避免放射性污染;而且,这两个湖相距较远,高度相差6.675英尺,这样可以避免相互干扰和便于比较。
1925年11月9日,国家科学院在威斯康星州的Madison召开会议,密立根报告了测量的结果,他的结果表明,这些射线不是起源于地球或低层大气,而是从宇宙射来的,密立根同意当时大多数人的观点,认为宇宙射线是一种高频电磁辐射,其频率远高于X射线,是后者平均频率的1000倍。他认为,这种射线的穿透力既然比最硬的γ射线还强许多,当然不会由带电粒子组成。如果假定宇宙射线真是像阴极射线那样的带电粒子流,那它能穿透相当于6英尺厚度铅块的穿透力,将使这些粒子具有当时难以想像的高能量。如果假定宇宙射线由光子(即电磁辐射的量子)组成,那么宇宙射线辐射到地球时,其飞行路线将不受地磁的影响;相反,如果宇宙射线是由带电粒子组成,则它将肯定受到地磁场的影响,飞到高纬度地区的宇宙射线带电粒子将多于低纬度的地区,即有“纬度效应”(latitude effect),而密立根的测量结果表明,宇宙射线来自四面八方,不受太阳和银河系的影响,也不受大气层或地磁纬度的影响。
1927年,斯科别利兹(Dimitr Skobelzyn)利用云雾室摄得宇宙射线痕迹的照片,根据径迹在云雾室里的微小偏转,第一次确认了宇宙线粒子径迹。
1927-1929年,荷兰物理学家克莱(J.Clay,1882-1955)在从荷兰到印度尼西亚爪哇岛的旅行中,发现了纬度效应的踪迹——靠近赤道处宇宙射线强度比较低。

宇宙射线博思

博思(Walther Bothe,1891-1957)提出的符合计数法是在盖革计数器的基础上发展起来的,他所做的革新是利用两个计数管,使得只有电离碰撞在两个计数管中同时发生时,这两个计数管才会计数。他利用符合法来判断能量和动量守恒定律对光子和电子的每一次碰撞是否都有效,或者说这些定律是否是作为一种统计平均才成立。为了利用计数器研究被散射的α粒子和反冲电子之间是否符合,他与盖革考察了单个的康普顿散射,得到的结论是:能量和动量守恒定律对光子和电子之间的每一次碰撞都是有效的。从此,符合法在宇宙线的研究中得到了广泛应用。1930年前后,宇宙线领域里的一些重要发现几乎都和符合法分不开。符合法的发明也为核物理α射线和超声波等方面的研究提供了有效工具。博思与玻恩共同分享了1954年度诺贝尔物理学奖

宇宙射线正电子

1931年秋季,在罗马召开的国际核物理会议上,物理学家们向密立根提出的宇宙射线的电磁本质假说发起了公开的挑战。意大利物理学家罗西(Bruno Benedetto Rossi,1905-1993)(右图)在分析大量实验数据的基础上提出:从海平面观察到的宇宙线,本质上是由能量非常高的带电粒子组成;从强磁场使其偏转显示的结果来看,它们的能量大约高于几十个亿电子伏,远大于密立根的估计值。这些带电粒子也许是在大气层中,由宇宙辐射源初始的高能γ辐射产生的,但这种γ辐射(即光子)的能量远远高于密立根所说的“原子构造”时释放的能量。还有第二种可能,即宇宙线中观察到的高能粒子就是最初的宇宙辐射,或者至少是它有意义的一部分。
密立根让研究生安德逊利用强磁场中的云室,直接测量宇宙射线的能量,但安德逊的工作却否定了密立根的假说,还导致了正电子的发现。
1932年,C.D.安德森(Carl David Anderson,1905-1991)(左图)发现了正电子,这是宇宙射线研究的第一项引人注目的成果。
C.D.安德森是美国加州理工学院物理教授密立根(R.A.Millikan)的学生,从1930年开始跟密立根做宇宙射线的研究工作。从1930年起C.D.安德森负责用云室观测宇宙射线。安德森采用一个带有非常强磁铁的威尔逊云室来研究宇宙射线。他让宇宙射线中的粒子通过室内的强磁场,并快速拍下粒子径迹的照片,然后根据径迹长度、方向和曲率半径等数据来推断粒子的性质。

宇宙射线奇特径迹

1932年8月2日,C.D.安德森在照片中发现一条奇特的径迹,这条径迹和负电子有同样的偏转度,却又具相反的方向(右图),显示这是某种带正电的粒子。从曲率判断,又不可能是质子。于是他果断地得出结论,这是带正电的电子。狄拉克预言的正电子就这样被安德森发现了。
当时C.D.安德森并不了解狄拉克的电子理论,更不知道他已经预言过正电子存在的可能性。狄拉克是在他的相对论电子理论中作出这一预言的。从他的方程式可以看出,电子不仅应具有正的能态,而且也应具有负能态。他认为这些负能态通常被占满,偶尔有一个态空出来,形成“空穴”,他写道:“如果存在空穴,则将是一种新的,对实验物理学来说还是未知的粒子,其质量与电子相同,电荷也与电子相等,但符号不同。我们可以称之为反电子。”他还预言:“可以假定,质子也会有它自己的负态。……其中未占满的状态表现为一个反质子。”关于反质子的预言,到1945年才由西格雷(Emilio Segrè)证实。

宇宙射线布莱克特

英国物理学家布莱克特(Baron Patrick Maynard Stuart Blackett,1897-1974)从1921年起进行改进威尔逊云室照相技术以研究原子核的人工转变。1924年,他用云室照片首次成功地验证了人工轻核转变,即氦-14核俘获α粒子变为氧-17。1925年,他创制了云室照相受自动计数器控制的装置。在C.D.安德森发现正电子后的短短几个月,布莱克特就用他拍摄的正负电子成对产生过程的宇宙线径迹照片有力地证实了正电子的存在。
由于宇宙射线和正电子的发现有密切联系,诺贝尔委员会将1936年诺贝尔物理学奖授予这两个相关项目的赫斯和安德森,而布莱克特因改进威尔逊云室以及由此在核物理领域和宇宙射线方面作出的一系列发现,获得了1948年度诺贝尔物理学奖。

宇宙射线康普顿

美国物理学家康普顿(Arthur Holy Compton,1892~1962)(右图)因发现康普顿效应(也称“康普顿散射”)于1927年获诺贝尔物理学奖。他的主要兴趣是核物理研究,他预见核能会给人类带来巨大的利益,为了充分利用核能,康普顿决定先研究宇宙射线,计划在1932年对地磁纬度不同和高海拔的地方,进行宇宙射线强度等方面的测量,康普顿组织了6个远征队,到世界各地的高山、赤道附近低纬度区等进行了广泛测量,以便对初始的宇宙射线到底是光子还是带电粒子作出合理的判断,康普顿本人主持了美国中西部的落矶山脉以及欧洲南部的阿尔卑斯山脉、澳大利亚、新西兰、秘鲁和加拿大等地的两个远征队。
1932年3月18日,康普顿开始了行程5万余英里,遍历五大洲,跨越赤道5次的远征,远征开始时,康普顿倾向于接受密立根的(光子的)假说,在广泛测量之后,他的观点有了根本性的变化,他断定:海平面的宇宙射线强度可以相当满意地表示为只是地磁场倾角的函数;宇宙射线的强度随高度连续地增大,密立根所断言的在9000米处有最大值并不存在。9月份以后,康普顿陆续收到60多位科学家在分布范围极广的69个观测站测量到的数据,反映了纬度从北78°到南46°、经度从东175°到西173°这个地理经纬度的范围内,宇宙射线强度的分布情形,康普顿宣布宇宙线存在纬度效应,并认为宇宙射线是带电的高能粒子。
密立根在1932年也进行了范围较广泛的观测。加利福尼亚理工学院一位年青物理学家内赫(H.V.Neher)发明了一种高灵敏度的自动记录验电器。空军的负责人同意密立根使用轰炸机,可将测量仪器带到8000多米高空。9月底,密立根在气象署的帮助下利用气球到平流层作了测量。如果宇宙射线真是带电粒子流,密立根应当有条件得到康普顿相同的结论的,但他们由观测所得到的结论却完全不同(左图为密立根发表的文章)。

宇宙射线物理学会

1932年12月底,美国物理学会在新泽西州大西洋城(Atlantic City)召开会议,密立根和康普顿这两位诺贝尔物理奖获得者就宇宙射线的本质进行了激烈的争论。康普顿在会议上报告:不同纬度处宇宙射线强度有明显不同,说明初始宇宙射线有带电粒子的特征,并提出了支持这种观点的三种实验。密立根在大西洋会议上宣读了内赫跨越赤道航行的测量结果,没有发现纬度效应。由于双方都宣称自己有实验为证,无法统一思想,但大多数物理学家已经开始转向承认康普顿的观点。
1935年11月11日,由两名勇敢的驾驶员(Albert W. Stevens和Orvil A. Anderson)驾驶探测者2号氦气球(体积为113000立方英尺)上升到官方记录的22066米的高空,收集了大气、宇宙线和其他数据。
美国加利福尼亚理工学院的内德梅耶(Seth Neddermeyer,1907-1988)(右图)和安德森(Carl D. Anderson)1934年提出假设:具有高度贯穿力的踪迹是质量在电子与质子之间的粒子的踪迹。(左图为安德森与内德梅耶)
1936年,他们在宇宙射线中发现了一种带单位正电荷或负电荷的粒子,质量为电子的206.77倍,人们以为它就是汤川秀树1930年预言的介子,称它为μ介子,后来发现这种粒子其实并不参与强相互作用,是一种轻子,所以改名为μ子
1938年,奥格尔(Pierre Auger,1899-1993)(右图)发现了广延空气簇射。簇射是由原始高能粒子撞击产生的次级亚原子粒子。他发现簇射的能量高达 1015 电子伏特,即当时已知的一千万倍。
1940年3月9日,一架比奇AD-17双翼飞机在海拔21050英尺高空飞越南极,为美国探险队测量宇宙线。
1946年,物理学家罗西(Bruno Rossi)与查才品(Georgi Zatsepin)领导的小组进行了首次空气簇射结构的实验(右图)。研究小组创建了首个探测空气簇射的相关探测器阵列。
1946年,两位英国科学家罗彻斯特(George D.Rochester)和巴特勒(Clifford C.Butler,1922-1999)拍了许多云雾室事件的照片,在其中一张照片中,发现了些形状象字母V的径迹。只有承认质量近似为494MeV/c2 的粒子在飞行中衰变成二个π介子时生成这些径迹,才能对此作出解释。人们确信存在一种新的粒子,根据其径迹形状,就叫它V粒子(左图)。这种V粒子现在叫作K0粒子,这就是后来被称为奇异粒子的一系列新粒子发现的开始。
1947年8月16日,物理学家波默兰茨(Martin Pomerantz)宣布放飞了4个携带宇宙线探测仪的气球(左图),在至少127000英尺的高度越过了南极地区
1947年,英国的鲍威尔(Cecil Frank Powell,1903-1969)等人创造了将核乳胶用气球送到高层空间去记录宇宙线的方法,在玻利维亚安第斯山地区从宇宙射线中发现了汤川秀树1930年所预言的π介子,质量约为电子质量273倍,它与原子核之间有很强的相互作用,称为带电π介子。π介子存在的时间仅有两亿分之二点五秒,之后便分裂为μ介子,μ介子存在时间相对较长,为百万分之一秒,并以每秒钟上万公里的速度飞行。
汤川秀树与鲍威尔分别于1949年和1950年获得诺贝尔物理学奖。
1948 年,剑桥大学的天文学教授霍伊尔(Fred Hoyle,1915-2001)(左图)与邦迪(Hermann Bondi)、戈尔德(Thomas Gold)一起提出了“稳恒态宇宙理论”,该理论认为宇宙在大尺度上,包括任何时候和任何地方,都是一样的。在这个“稳恒态”宇宙中没有开始,没有结束。星系在各个方向上简单地飞离,就像烤蛋糕时蛋糕上的葡萄干随着蛋糕膨胀而远离。为了填补星系退行后留下的虚空并保持宇宙总的外观,他们假定物质在星系际空间无中生有地创生,物质的创生率(每立方公里每年产生一个粒子)恰好用来形成新的星系。
1948年,伽莫夫(George Gamow,1904-1968)和阿尔法(Ralph Asher Alpher,1921-)也提出了宇宙是从一个原始高密状态演化而来的理论,并请著名核物理学家贝蒂(Hans Bethe)一起署名,这一理论被称作αβγ(Alpher,Bethe,& Gamow)理论,霍伊尔在1952 年把它称为“大爆炸理论”(the Big Bang),但他认为宇宙不会在一声爆炸中产生。
1949年,费米(Enrico Fermi,1901~1954)发表宇宙射线理论,尝试以超新星爆发的磁力冲击波来解释宇宙射线的粒子加速机制,但未足以解释最高能宇宙射线的存在。
1962年,美国麻省理工学院的林斯里(John Linsley)与同事,利用新墨西哥州火山农场10平方公里的空气簇射探测器组探测到一个能量估计为 1020 电子伏特的宇宙射线。
1965年,美国贝尔电话实验室的彭齐亚斯(Arno Penzias,1933-和威尔逊(R.W.Wilson)无意中发现了大爆炸理论预言的宇宙微波背景辐射。他们本想要使用一根大型通信天线进行射电天文学的实验研究,但因不断受到一个连续不断本底噪声的干扰,使得实验无法进行下去。那个噪声的波长为7.35厘米,相当于3.5k温度的黑体辐射,其各向同性的程度极高,而且与季节变化无关。几乎一年,他们想尽办法跟踪和除去这个噪声但丝毫不起作用,便打电话给普林斯顿大学的罗伯特·迪克(Robert Henry Dick,1916~),向他描述遇到的问题,希望他能作出一种解释。迪克马上意识到两位年轻人想要除去的东西正是迪克研究组正在设法寻找的东西——宇宙大爆炸残留下来的某种宇宙背景辐射。彭齐亚斯和威尔逊获得了1978年诺贝尔物理学奖。
1966年,格雷森(Kenneth Greisen)、查才品(Georgi Zatsepin)和古兹文(Vadem Kuzmin)认为,高能宇宙线与微波背景辐射相互影响减小了能量,因此宇宙射线的能量应低于5 x 1019电子伏特。(右图为卫星记录的宇宙微波背景图

宇宙射线探测方式

编辑
直接探测法——1014eV以下的宇宙射线,通量足够大,可用面积约在平方公尺左右的粒子探测器,直接探测原始宇宙射线。这类探测器需要人造卫星或高空气球运载,以避免大气层吸收宇宙射线。
间接探测法——1014eV以上的宇宙射线,由于通量小,必须使用间接测量,分析原始宇宙射线与大气的作用来反推原始宇宙射线的性质。当宇宙射线撞击大气的原子核后产生一些重子、轻子及光子(γ 射线)。这些次级粒子再重复作用产生更多次级粒子,直到平均能量等于某些临界值,次级粒子的数目达到最大值,称为簇射极大,在此之后粒子逐渐衰变或被大气吸收,使次级粒子的数目逐渐下降,这种反应称为“空气簇射”。地球地表的主要辐射源是放射性矿物,空气簇射的次级粒子是高空的主要辐射源,海拔20公里处辐射最强,100公里以上的太空辐射则以太阳风及宇宙射线为主。
空气簇射的成份主要以轻子居多,重子最少。探测空气簇射有三种方式:地面(及地下)阵列、契伦可夫望远镜、萤光望远镜。
地面(及地下)阵列通常需要多个带电粒子探测器组成,分布于广大平坦的区域,次级粒子才能有充足的取样,可全年操作。契伦可夫望远镜可探测由次级粒子产生的契伦可夫光,萤光望远镜可探测带电粒子游离氮气产生的萤光,这两种望远镜只能在夜间操作且需避开城市光源,平均操作时间只有10%。
宇宙射线为来自太阳系以外的高能量粒子,能量约从109eV to 1020eV以上。在靠近地球的太空中,每秒每平方公分约有一个宇宙射线穿过。宇宙射线的主要成份是质子,及其它核种从氦核到铁核以上,甚至微量的镧系元素。人造粒子加速器其最高能量约为1013eV。右图显示了宇宙射线的能谱,横跨12个数量级的能量。能谱上有两个有重要物理意义的转折点,1015eV称为膝点(knee),3′1018eV称为踝点(ankle)。极高能宇宙射线(Ultra High Energy Cosmic Rays: UHECR)主要研究1018eV以上的宇宙射线。为什么会有这么高的能量?它们的来源在那里?它们是什么粒子?这些都是宇宙射线物理学家的研究课题。
UHECR的研究经费在美国超导对撞机(Superconducting Super Collidea)计划终止后快速增加,并成为天文粒子物理学研究的三大主流之一(另两项为微中子与暗物质)。
宇宙射线中的核子之所以能够从他们遥远的源头一直到达地球,是因为宇宙中物质的低密度。核子与其它物质有着强烈的感应,所以当宇宙线接近地球时,便开始于大气层气体中的核子撞击。在粒子雨的过程中,这些碰撞产生很多π介子和K介子,这些是会很快衰退为不稳定的μ介子。由于与大气层没有强烈的感应以及时间膨胀的相对论性效应,许多μ子能够到达地球表面。μ子属于电离辐射,从而可以轻易被许多粒子探测器检测到,例如气泡室,或闪烁体探测器。如果多个μ子在同一时间被不同的探测器检测到,那么它们一定产自同一次粒子雨。
如今,新的探测手段能够不通过粒子雨这个现象检测这些高能粒子,也就是在太空中,不受大气层的干扰,直接探测宇宙线,例如阿尔法磁谱仪实验。

宇宙射线主要影响

编辑

宇宙射线外星生命演化

宇宙射线不断轰击地球,而一项最新研究则认为这种看不见摸不着的高能粒子流可能在决定其它行星上是否存在生命方面起着关键性的作用。
在其被发现100多年之后,宇宙射线仍然困扰着科学家们。这种高能粒子流几乎以光速在宇宙空间中传播,其中一些粒子携带的能量比地球上最强大加速器达成的粒子能量还要高1亿倍。宇宙射线是核子流,其中的主要成分是质子,也就是氢核。
当宇宙射线轰击地球大气层,它们会产生一系列的次级粒子流,其中包括μ子,这是一种与电子相似但质量要大得多的亚原子粒子。这其中的部分粒子流会抵达地面,对地面上和海洋中的生命产生危害。事实上μ子甚至可以穿透数十米后的地表岩土层。
科学家们对宇宙射线可能对遥远的系外行星宜居性造成的影响开展研究。在过去20年间,科学家们使用地面和空间望远镜设备发现了上百颗系外行星,这唤起了人们的希望,人们认为在那些系外行星中或许存在着某种形式的外星生命。研究人员的兴趣尤其集中在那些位于所谓“宜居带”区域内的系外行星,在这些区域,行星距离恒星的远近适当,从而允许水以液态形式存在于其地表。在地球上,液态水孕育了丰富的生命形式。
研究人员认为,一颗行星遭受的辐射水平将影响其宜居性。尽管一颗行星经受的外部辐射通量中,来自它的“太阳”的通量要远高于来自星系的宇宙射线,但后者的粒子能量要远远高于太阳辐射中的光子和质子流能量,从而使其具有不可忽视的影响。
这项研究的作者迪米特里·艾特利(Dimitra Atri)是一名来自“蓝色大理石空间科学研究所”的天体物理学家,这是一家由来自世界各地的科学家们组成的非盈利研究机构。研究人员对可能影响行星接受到辐射剂量的两个重要因素进行了关注,包括其磁场的强度,以及大气层的厚度。
艾特利表示:“当我在对火星和地球开展研究时便开始思考这个问题。这两颗行星是近邻,但地球上拥有繁盛的生物圈,火星却是一片荒芜。这是为什么?”他说:“主要的原因就在于,相比地球,火星的环境辐射通量很高。这是因为火星的大气层相比地球几乎可以忽略不计,以地球的标准来看,它非常非常稀薄。另外火星也没有全球性的磁场,因此它便相应的缺乏地球那样面对宇宙射线的保护层。因此我认为正是这样的差异导致了两颗原本相似的行星完全迥异的命运。”
研究人员模拟了不同的行星情景,从完全缺乏磁场的行星,到像拥有地球那样强磁场的行星;从拥有非常稀薄大气层的行星,到拥有像地球那样浓密大气层的行星。艾特利表示:“我们知道地球的磁场保护着我们免受宇宙射线的伤害,我们也认为宇宙射线是对地面环境辐射通量造成显著影响的因素。”
然而出乎意料的是,艾特利表示:“我们发现行星的大气层厚度才是对行星地表辐射通量具有更重要作用的因素。”他说:“如果以地球为例,你将地球的磁场完全去除,那么我们暴露于环境中的辐射通量将上升两倍,这是非常大的增加,但尽管如此,这样也不会对我们的生存构成严重的威胁。然而,如果你保留磁场,但将地球的大气层浓度降低10倍,那么我们接受到的辐射通量将会上升两个数量级。”
科学家们现在倾向于认为那些围绕红矮星运行的系外行星是搜寻外星生命的理想地点,因为这类恒星相对暗弱,它们的数量是宇宙中最多的,大约占到宇宙中全部恒星数量的80%左右。然而统计学研究显示在相对接近红矮星的宜居带中的系外行星似乎更倾向于拥有较弱的磁场,这一倾向在一类被称作“超级地球”的系外行星中显得尤其明显。所谓“超级地球”是指那些质量在10倍地球质量以下的岩石质行星。天体生物学家们认为这些行星较弱的磁场可能会导致其不适宜生命生存,然而此次的这项发现表明,较弱的磁场可能并不会构成大的问题。
艾特利表示,未来的进一步研究将考察增长的辐射通量将如何影响生命的演化进程。他说:“现有针对辐射剂量对生物体作用的研究主要做法是使用很高的辐射剂量来考察生物体在这样的环境下将受到怎样的伤害,是否会死亡。但我认为系统考察在逐渐升高的辐射剂量环境下生物体的反应将能更好地为研究宇宙射线对宜居环境的影响提供参考。”
艾特利和他的同事们已经在10月份出版的《天体生物学》杂志上详细介绍了他们的发现。 [5] 

宇宙射线太空载人飞行

宇宙射线被地球大气层影响,对地面的单个人的天然本底辐射仅为0.3-0.4 mSv/y。在大气层外,每秒约有一个质子或更重的原子核穿过指甲大小的面积,总共每秒约有5000个离子贯穿宇航员的身体,打断体内的化学键,引起一连串电离反应。在宇宙射线中,少数较重的核子会造成比质子更大的伤害,因为打断化学键的能力与电荷平方成正比。例如,铁原子核所造成的伤害是质子的676倍。根据美国航空航天局(NASA)的估计,航天员在太阳系内的太空中每年受到250 mSv的辐射,体内约有1/3的DNA会被宇宙射线切断。在月面是70-120mSv/y,近地轨道是100mSv/y,范艾伦辐射带为15 Sv/y。太阳也会释放大量质子与重原子核,以接近光速喷出,有时一小时内会逾数Sv,对没有屏障的航天员是致死剂量。 [6] 
词条图册 更多图册
参考资料
  • 1.    Rossi, Bruno (1934). "Misure sulla distribuzione angolare di intensita della radiazione penetrante all'Asmara". Ricerca Scientifica. 5 (1): 579–589.
  • 2.    L. Anchordoqui, T. Paul, S. Reucroft, J. Swain. Ultrahigh Energy Cosmic Rays: The state of the art before the Auger Observatory. International Journal of Modern Physics A. 2003, 18 (13): 2229. arXiv:hep-ph/0206072. Bibcode:2003IJMPA..18.2229A. doi:10.1142/S0217751X03013879.
  • 3.    Secondary antiprotons and propagation of cosmic rays in the Galaxy and heliosphere. I. V. Moskalenko (NASA/GSFC), A. W. Strong (MPE, Garching), J. F. Ormes (NASA/GSFC), M. S. Potgieter (Potchefstroom U.) Astrophys.J.565:280-296,2002 cite:arXiv:astro-ph/0106567v2 [1]
  • 4.    D. Lal, A.J.T. Jull, D. Pollard, L. Vacher. Evidence for large century time-scale changes in solar activity in the past 32 Kyr, based on in-situ cosmogenic 14C in ice at Summit, Greenland. Earth and Planetary Science Letters. 2005, 234 (3–4): 335–249. Bibcode:2005E&PSL.234..335L. doi:10.1016/j.epsl.2005.02.011.
  • 5.    研究称宇宙射线或将影响外星生命演化  .新浪[引用日期2015-06-21]
  • 6.    “罩”不住的星际旅行 by Eugene N. Parker 《科学的美国人》2006年4月第50期
词条标签:
科学百科天文学分类 自然现象 自然 物理学 学科 专有名词